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ABSTRACT 

Gas sensors have the potential to assist cooking by 
providing feedback on the cooking process and by further 
automating cooking. In this work, we explored the potential 
use of gas sensors to monitor food during the cooking 
process. Focusing on dry cooking, we collected gas 
emissions using 13 sensors during trials in which food was 
cooked to various degrees of doneness. Using decision tree 
classifiers, we were able to predict doneness for waffles and 
popcorn with 73% and 85% accuracy, respectively. We 
reflect on the potential reasons for this variation and the 
ways in which gas sensors might reliably be used in 
ubicomp applications to support cooking.  
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INTRODUCTION 

Inferring the doneness of food as it is being cooked can be 
difficult. Novice cooks, in particular, struggle because they 
are not familiar with the characteristics of an item cooked to 
the appropriate doneness. This lack of confidence is 
negatively correlated with success, and novices are 
significantly less confident performing dry cooking 
techniques such as frying and microwaving [2] as opposed 
to cooking in water-based liquids. Likewise, those with low 
or no vision may be unable to visually inspect the food. 
Finally, in industrial kitchens, cooking at large scale 
requires automated determinations of food state. Thus, in 
this work, we explore how ubicomp technologies—gas 
sensors—might be used to support dry cooking.  

Technology has long been appropriated to assist in cooking, 
such as thermometers for level of doneness and computer 
vision for level of browning [5]. However, not all cooking 
scenarios are amendable to using vision or probe 

thermometers, because the food can be visually obstructed, 
and inserting thermometers can be inconvenient. Gas 
sensors can “smell” odors and other gases released while 
cooking, and have had some success in classifying smells 
when used in testing chambers [9]. We build on this work 
by expanding these determinations into new, less sterile and 
controlled environments.  

In this paper, we present our findings from using an electric 
nose to infer information while performing dry cooking 
methods in a residential kitchen. We describe an 
experiment testing two dry-cooked products: microwave 
popcorn and waffles. We used an electronic nose of 13 
sensors to collect data from three samples of each food, 
cooked for successively longer durations until the samples 
burned and analyzed these using several classifiers.  

With the data collected from our electronic nose we found 
decision trees to have potential for detecting optimal 
cooking doneness in popcorn (84.8% accuracy), waffles 
(73.3% accuracy), and a combined dataset (75% accuracy). 
In addition, through a post-hoc analysis of our data we were 
able to detect the type of food being cooked. While our 
experiment was not optimally designed for this finding, 
detection of food type suggests an exciting direction for 
future research. A smart kitchen, for example, could first 
detect what is being cooked and then support the proper 
doneness classifier. We discuss issues with our sensing 
platform and analysis approach that could explain the 
difference in our results.  

RELATED WORK 

This research touches on two distinct but important areas of 
inquiry. First, from a domain standpoint, we consider how 
to teach people to cook in ubicomp-enabled kitchens, our 
primary motivating scenario. Second, in terms of 
underlying technology, we describe the ways in which gas 
sensors have been used in similar efforts.  

Previous work has described cooking related systems that 
use a variety of technologies, including accelerometers and 
pressure plates [9], and vision [7]. However, these systems 
are primarily concerned with providing recipe suggestions, 
nutrition tracking, or assisting ingredient preparation and 
recipe navigation. One system, Panavi, is notable here for 
measuring the temperature of the pan to determine doneness 
[9]. However, even in this case, the system neglects the 
actual food itself. Thus, there is an open area of inquiry for 
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measuring food state while cooking. An optimal situation 
would provide data from within the food, however gas 
sensors provide a more practical proxy.  

There has also been substantial work using electric noses to 
detect differences in food in highly controlled experimental 
environments [1]. Researchers have applied gas sensors in 
“simple” applications, such as tracking toast as it burns [3], 
tracking the stages of baking [8], and determining freshness 
of ingredients [1]. Most projects from the aforementioned 
literature use laboratory equipment, a situation unrealistic 
for the dynamic kitchen environment. Thus, there remain 
research questions around how these sensors might be used 
in an uncontrolled open-air environment, such as a smart 
kitchen. Goschnick et al. placed an electronic nose above a 
toaster to identify cooking phases [3]. We extend this work 
by looking at two additional foods that undergo more 
complex changes while cooking.  

Although gas sensing has not yet been used to detect 
cooking states, we are particularly inspired by Kobayashi et 
al.’s use of gas sensors and accelerometers worn around the 
neck to infer location and activity [6]. In this paper, we 
present a solution that uses sensors fixed in the environment 
to infer food and cooking states. In this way, this work 
contributes to the state of the art in ubicomp cooking 
support by detecting the internal food states without 
piercing or touching the food and by exploring the use of 
sensors in an open air uncontrolled environment.  

METHODS 
Data Collection 

Individual gas sensors are designed to react to specific 
molecules, but other molecules impact readings, 
complicating the detection of specific gases. Due to this 
limitation, multiple gas sensors are typically used in an 
array, generally referenced as an “electronic nose”, so that 
more unique patterns can be detected in sampling readings 
across the multiple sensors [9].  

In this work, we created a custom electronic nose that 
includes: two Alcohol, two Methane (CH4), two Carbon 
Monoxide (CO), two Liquefied Petroleum Gas (LPG), 
Hydrogen (H2), Carbon Dioxide (CO2), Hydrogen Sulfide 
(H2S), and Ammonia (NH3). These sensors were chosen 
based on previous testing and sensitivity to molecules 
released during cooking, such as H2, H2S, and NH3 
produced in the Maillard reaction. To evaluate the ability of 
an electronic nose to infer the state of foods cooked using 
dry cooking methods in a naturalistic environment, we 
performed an experiment cooking popcorn and waffles in a 
home kitchen with no forced-air flow while recording.  

The sensors were preheated at the beginning of each day’s 
trials to adhere to manufacturer specified preparation 

requirements. Before each trial, the cooking device was 
cleaned and a vent was turned on to clear the air in the 
kitchen until the sensor readings stabilized (~4 minutes) 
then the vent was turned off. Then the sensors were placed 
two feet above the cooking equipment. This distance was 
chosen because it was approximately the distance to the 
vent in local apartments.  

We cooked three samples of each food at 20 second 
intervals up to the point of burning. Thus, if a food burned 
at 60 seconds, there would be 9 samples cooked (i.e., three 
cooked for 20 seconds, three for 40 seconds, and three for 
60 seconds). For each sample, we recorded the start and 
stop times of cooking, corresponding to the application and 
removal of the heat source. Each of the foods types were 
cooked using the preparation methods described on the 
package, except for the timing as previously noted (see 
Table 1). In total, 93 trials were performed.  

We rated doneness of waffles on a 20-point scale across 
two researchers, who disagreed by no more than one point 
and the doneness of popcorn by counting the number of 
kernels popped, unpopped, and burnt. We then transformed 
the popcorn data to a 1-20 scale and translated both food 
items from the 1-20 scale to one of three nominal values: 
undercooked (0-7), cooked (8-11), and overcooked (13-20). 
These ranges were determined based notes taken about 
human-taste tests performed for each trial.  

Feature Extraction 

In preparation for the classifiers, we processed the data to 
highlight the effect of time and distance on the gas sensors’ 
ability to react to the gas molecules released in an odor. 
First, we segmented the time series data into five-second 
frames. We used this frame to detect potency and diffusion 
changes in near real time, while avoiding the delayed 
feedback that would be caused by a larger window. Then, 
each sample, values were shifted so the lowest value was 
represented as zero. We then extracted eight statistical 
features from each sensor’ values collected from the 13 gas 
sensors over each five-second frame. These features 
include: min, max, mean, standard deviation, sum, variance, 
slope, and y-intercept.  

After computing these features, we used the last five-
second frame from each sample and the associated 
doneness of the sample, as the target class, to train the 
classifiers. We used only the last frame, because that frame 
corresponds to the classification task that would be required 
in a live application of this technology (i.e., disregarding 
temporal changes). 

Modeling 

For analysis, we selected seven different algorithms: SMO, 
Random Tree, J48, Random Forest-10, Random Forest-100, 

Food Portion Cooking medium Heat Evaluation criteria Sec until burnt # Trials 

Waffle 
�

�
 cup of batter Waffle Iron 415 F Doneness rating of  0-20 400 60 

Popcorn 2.75oz bag Microwave 1000Watt Popped % and burned % 220 33 
 

Table 1. Units of analysis 



 

Simple Logistic, and Logistic. We selected the best 
performing algorithm based on the greatest ROC Area. 
These ended up being SMO, Simple Logistic, and Random 
Forest-100. An overview is provided in Table 2. 

RESULTS 

Using classifiers on gas emission data while cooking was 
more accurate for popcorn (84.8% accuracy) than waffles 
(73.3% accuracy). The classifiers were able to correctly 
classify 28 out of 33 instances of popcorn data (see Table 
3). Although each were 84.8% accurate, Random Forest-
100 provided the greatest ROC at .981. Upon closer 
inspection, misclassifications were more common for the 
cooked category. For waffles, the classifier was only able to 
classify 44 of the 60 instances for 73.3% accuracy (see 
Table 4). In this case, simple Logistic provided the best 
ROC of the algorithms with the highest accuracy (.902). 
The classifier was not able to correctly identify any of the 
cooked waffle trials.  

To simulate the cooking of the food in a kitchen that might 
not be aware of what food is being cooked, we combined 
the data from both popcorn and waffles, resulting in 75.3% 
accuracy from the Random Forest classifier (see Table 5). 
In practice, a smart kitchen could improve its accuracy by 
first teasing apart the types of food being cooked [1, 9]. In 
other words, classifiers will likely be able to differentiate 
between the foods being cooked and then follow up with 
the proper algorithm to determine how cooked the food is.  

DISCUSSION 

The decrease in accuracy when classifying waffles can be 
explained by the more complex patterns exhibited while 
cooking. Future studies should explore the benefit from 
temporally informed features or models that allow memory 
of prior state changes, such as Hidden Markov Models, to 
help account for the repeating feature patterns in the data. 

After the classifiers are trained, a gas sensor based cooking 
system should be able to determine how close to the “ideal” 
state the food currently is. In this way, gas sensors could 
usefully support cooks, particularly those who cannot 
successfully visually inspect food for ideal cooking times. 
Beyond our primary motivating example of residential 
cooks, these kinds of predictions could be helpful in 
industrial kitchens as well, where tight control of product 
consistency and quality is essential. Thus, future work also 
demands consideration for how such a system might 
provide appropriate feedback to cooks, including novices, 
those with visual impairments, and even other machines.  

Although promising, the small sample size, particularly of 
the “done” samples, limits the power of this work. A study 
with more samples at each time period might determine 
whether the lower accuracy of cooked samples was caused 
by the small sample size or misclassification. Furthermore, 
evaluation by human raters was used to produce our target 
class; however, a more objective analysis of the samples 
may create cleaner data that machine learning could exploit. 
In particular, the difficulty of detecting ideal doneness 

compared to “undercooked” suggests that initial 
applications in this area might choose to focus on a binary 
classifier of “undercooked” which, while not enabling 
autonomous kitchens, might be beneficial for the prevention 
of food borne illnesses associated with undercooked food. 
However, a user study to determine what kinds of 
interactions would most benefit novices should be 
conducted first. 

Automatic determination of the state of a food regardless of 
its type is a necessary step for ubicomp technologies to be 
able to operate autonomously in a smart kitchen. As 
expected, multiple food types create problems when trying 
to identify specific states for one type of food; however if 
systems start with food type, selection of the proper model 
to use can be facilitated.   

The discrepancy between the two cooking methods might 
be explained by the difference in the intensity of the 
cooking. Microwaves heat the popcorn more efficiently, 
thus burning the popcorn after 220 seconds instead of the 
400 seconds required to burn waffles. Meanwhile, a visual 
analysis of the both popcorn and waffle data suggests the 
existence of cooking phases. These cooking phases are state 

1 Classified using Random Forest-100. 

 
popcorn 

 
waffles 

 
Algorithm Avg TP ROC Avg TP ROC 

SMO 0.733 0.827 0.727 0.838 

J48 0.55 0.631 0.788 0.765 

Random Forest-10 0.65 0.84 0.848 0.927 

Random Forest-100 0.733 0.856 0.848 0.981 

Simple Logistic 0.733 0.902 0.848 0.946 

Logistic 0.633 0.803 0.727 0.839 

Table 2. Overview of algorithms and effectiveness 

 under- cooked over- recall 

undercooked 15 0 0 1 

cooked 1 6 2 0.66667 

overcooked 0 2 7 0.77778 

precision 0.9375 0.75 0.77778   

Table 3. Confusion matrix for popcorn classification1 

 under- cooked over- recall 

undercooked 18 1 2 0.85714 

cooked 1 7 3 0.63636 

overcooked 5 4 19 0.67857 

precision 0.75 0.58333 0.79167   

Table 4. Confusion matrix for waffle classification1 

 under- cooked over- recall 

undercooked 30 1 5 0.83333 

cooked 4 9 7 0.45 

overcooked 3 3 31 0.83784 

precision 0.81081 0.69231 0.72093   

Table 5. Confusion matrix for the combined dataset1 



 

changes that food goes through while cooking. In waffles, 
these phases could be: heating, setting, drying, and crisping. 
In this case, doneness cannot be detectable based solely on 
the statistics gathered in a five-second window.  

As popcorn cooks, sensor values steadily grow until the 
popcorn begins to burn, at which point, the slopes increase 
considerably -- particularly NH3 (see Figure 1, top).  The 
consistently positive relationship is what allows a particular 
five-second frame to be used to reliably infer the current 
state of the food being cooked. Waffles, on the other hand, 
show a bimodal shape, in which the end of the first hump 
coincides with the time when waffles first met our 
“cooked” condition. Afterwards, readings rise slightly and 
the sensors produce noisy data until the waffles burn a few 
minutes later (see Figure 1, bottom). Because the current 
classification replies on distinct differences between five-
second timeframes, this noisy area is likely a strong 
contributor to the misclassification of the waffle data. But 
samples taken from various points in time during the noisy 
area are indistinguishable. Additionally, ML techniques that 
are able to detect and remember distinctive phases from an 
array of sensor streams should support tracking complex 
cooking processes. Ultimately, real world cooking scenarios 
require a phased approach in order to detect both transitions 
in food during the cooking process, as well as transitions in 
recipes that involve multiple ingredients (e.g., adding meat 
after onions have browned).  

CONCLUSION & FUTURE WORK 

In this paper, we conducted an analysis of gas sensor data 
from cooking popcorn and waffles collected in a residential 
kitchen. We found that using Random Forest to create a 
model from these data is promising for popcorn (84.8% 
accuracy) and somewhat promising for waffles (73.3%); 
however, the combination dataset is only 75% accurate. 
Thus, if food types can be reliably differentiated, 
classification would be more accurate for popcorn.  

Using gas sensors is a step to having a fuller picture of what 
is happening in a kitchen. In addition to the suite of other 
ubicomp sensor technologies (e.g., audio or video), gas 
sensors have the added benefit of being able to provide 
information previously invisible to many other kitchen 
tracking systems, providing the ability to not only classify 
the type of food, but also to help with nutritional tracking. 
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Figure 1. Sensor readings across time from popcorn (top) and waffle (bottom) trials. With popcorn, sensor levels consistently rise as the 
popcorn begins to burn at 180 seconds. Waffles exhibit a bimodal shape, when food begins to burn at 340 seconds, particularly NH3. 


