
Chapter 6

The process of interaction design
6.1 Introduction
6.2 What is interaction design about?

6.2.1 Four basic activities of interaction design
6.2.2 Three key characteristics of the interaction design process

6.3 Some practical issues
6.3.1 Who are the users?
6.3.2 What do we mean by "needs"?
6.3.3 How do you generate alternative designs?
6.3.4 How do you choose among alternative designs?

6.4 Lifecycle models: showing how the activities are related
6.4.1 A simple lifecycle model for interaction design
6.4.2 Lifecycle models in software engineering
6.4.3 Lifecycle models in HCI

6.1. Introduction
Design is a practical and creative activity, the ultimate intent of which is to develop
a product that helps its users achieve their goals. In previous chapters, we looked
at different kinds of interactive products, issues you need to take into account
when doing interaction design and some of the theoretical basis for the field. This
chapter is the first of four that will explore how we can design and build interactive
products.

Chapter 1 defined interaction design as being concerned with "designing inter-
active products to support people in their everyday and working lives." But how do
you go about doing this?

Developing a product must begin with gaining some understanding of what is
required of it, but where do these requirements come from? Whom do you ask
about them? Underlying good interaction design is the philosophy of user-centered
design, i.e., involving users throughout development, but who are the users? Will
they know what they want or need even if we can find them to ask? For an innova-
tive product, users are unlikely to be able to envision what is possible, so where do
these ideas come from?

In this chapter, we raise and answer these kinds of questions and discuss the
four basic activities and key characteristics of the interaction design process that

166 Chapter 6 The process of interaction design

were introduced in Chapter 1. We also introduce a lifecycle model of interaction
design that captures these activities and characteristics.

The main aims of this chapter are to:

Consider what 'doing' interaction design involves.
Ask and provide answers for some important questions about the interaction
design process.
Introduce the idea of a lifecycle model to represent a set of activities and
how they are related.
Describe some lifecycle models from software engineering and HCI and dis-
cuss how they relate to the process of interaction design.
Present a lifecycle model of interaction design.

6.2 What is interaction design about?
There are many fields of design, for example graphic design, architectural design,
industrial and software design. Each discipline has its own interpretation of "de-
signing." We are not going to debate these different interpretations here, as we are
focussing on interaction design, but a general definition of "design" is informative
in beginning to understand what it's about. The definition of design from the Ox-
ford English Dictionary captures the essence of design very well: "(design is) a plan
or scheme conceived in the mind and intended for subsequent execution." The act
of designing therefore involves the development of such a plan or scheme. For the
plan or scheme to have a hope of ultimate execution, it has to be informed with
knowledge about its use and the target domain, together with practical constraints
such as materials, cost, and feasibility. For example, if we conceived of a plan for
building multi-level roads in order to overcome traffic congestion, before the plan
could be executed we would have to consider drivers' attitudes to using such a con-
struction, the viability of the structure, engineering constraints affecting its feasibil-
ity, and cost concerns.

In interaction design, we investigate the artifact's use and target domain by
taking a user-centered ap'proach to development. This means that users' concerns
direct the development rather than technical concerns.

Design is also about trade-offs, about balancing conflicting requirements. If we
take the roads plan again, there may be very strong environmental arguments for
stacking roads higher (less countryside would be destroyed), but these must be bal-
anced against engineering and financial limitations that make the proposition less
attractive. Getting the balance right requires experience, but it also requires the de-
velopment and evaluation of alternative solutions. Generating alternatives is a key
principle in most design disciplines, and one that should be encouraged in interac-
tion design. As Marc Rettig suggested: "To get a good idea, get lots of ideas" (Ret-
tig, 1994). However, this is not necessarily easy, and unlike many design disciplines,
interaction designers are not generally trained to generate alternative designs.
However, the ability to brainstorm and contribute alternative ideas can be learned,
and techniques from other design disciplines can be successfully used in interaction

6.2 What is interaction design about? 167 I
design. For example, Danis and Boies (2000) found that using techniques from
graphic design that encouraged the generation of alternative designs stimulated in-
novative interactive systems design. See also the interview with Gillian Crampton
Smith at the end of this chapter for her views on how other aspects of traditional
design can help produce good interaction design.

Although possible, it is unlikely that just one person will be involved in devel-
oping and using a system and therefore the plan must be communicated. This re-
quires it to be captured and expressed in some suitable form that allows review,
revision, and improvement. There are many ways of doing this, one of the simplest ~
being to produce a series of sketches. Other common approaches are to write a de-
scription in natural language, to draw a series of diagrams, and to build prototypes.
A combination of these techniques is likely to be the most effective. When users
are involved, capturing and expressing a design in a suitable format is especially
important since they are unlikely to understand jargon or specialist notations. In
fact, a form that users can interact with is most effective, and building prototypes of
one form or another (see Chapter 8) is an extremely powerful approach.

So interaction design involves developing a plan which is informed by the
product's intended use, target domain, and relevant practical considerations. Alter-
native designs need to be generated, captured, and evaluated by users. For the
evaluation to be successful, the design must be expressed in a form suitable for
users to interact with.

Imagine that you want to design an electronic calendar or diary for yourself. You might use
this system to plan your time, record meetings and appointments, mark down people's birth-
days, and so on, basically the kinds of things you might do with a paper-based calendar.
Draw a sketch of the system outlining its functionality and its general look and feel. Spend
about five minutes on this.

Having produced an outline, now spend five minutes reflecting on how you went about
tackling this activity. What did you do first? Did you have any particular artifacts or experi-
ence to base your design upon? What process did you go through?

Comment The sketch I produced is shown in Figure 6.1. A S you can see, I was quite heavily influenced
by the paper-based books I currently use! I had in mind that this calendar should allow me
to record meetings and appointments, so I need a section representing the days and months.
But I also need a section to take notes. I am a prolific note-taker, and so for me this was a
key requirement. Then I began to wonder about how I could best use hyperlinks. I certainly
want to keep addresses and telephone numbers in my calendar, so maybe there could be a
link between, say, someone's name in the calendar and their entry in my address book that
will give me their contact details when I need them? But I still want the ability to be able to
turn page by page, for when I'm scanning or thinking about how to organize my time. A
search facility would be useful too.

The first thing that came into my head when I started doing this was my own paper-based
book where I keep appointments, maps, telephone numbers, and other small notes. I also
thought about my notebook and how convenient it would be to have the two combined.
Then I sat and sketched different ideas about how it might look (although I'm not very good
at sketching). The sketch in Figure 6.1 is the version I'm happiest with. Note that my sketch

168 Chapter 6 The process of interaction design

link t o
address book

i links always
available

link t o
notes section

turn t o
next page

Figure 6.1 An outline sketch of an electronic calendar.

has a strong resemblance to a paper-based book, yet I've also tried to incorporate electronic
capabilities. Maybe once I have evaluated this design and ensured that the tasks I want to
perform are supported, then I will be more receptive to changing the look away from a
paper-based "look and feel."

The exact steps taken to produce a product will vary from designer to designer, from
product to product, and from organization to organization. In this activity, you may have
started by thinking about what you'd like such a system to do for you, or you may have been
thinking about an existing paper calendar. You may have mixed together features of differ-
ent systems or other record-keeping support. Having got or arrived at an idea of what you
wanted, maybe you then imagined what it might look like, either through sketching with
paper and pencil or in your mind.

6.2.1 Four basic activities of interaction design
Four basic activities for interaction design were introduced in Chapter 1, some of
which you will have engaged in when doing Activity 6.1. These are: identifying
needs and establishing requirements, developing alternative designs that meet
those requirements, building interactive versions so that they can be communicated
and assessed, and evaluating them, i.e., measuring their acceptability. They are
fairly generic activities and can be found in other designs disciplines too. For exam-
ple, in architectural design (RIBA, 1988) basic requirements are established in a
work stage called "inception", alternative design options are considered in a "feasi-
bility" stage and "the brief" is developed through outline proposals and scheme de-

6.2 What i s interaction design about? 169

sign. During this time, prototypes may be built or perspectives may be drawn to
give clients a better indication of the design being developed. Detail design speci-
fies all components, and working drawings are produced. Finally, the job arrives on
site and building commences.

We will be expanding on each of the basic activities of interaction design in the
next two chapters. Here we give only a brief introduction to each.

Identifying needs and establishing requirements

In order to design something to support people, we must know who our target
users are and what kind of support an interactive product could usefully provide.
These needs form the basis of the product's requirements and underpin subsequent
design and development. This activity is fundamental to a user-centered approach,
and is very important in interaction design; it is discussed further in Chapter 7.

Developing alternative designs

This is the core activity of designing: actually suggesting ideas for meeting the re-
quirements. This activity can be broken up into two sub-activities: conceptual design
and physical design. Conceptual design involves producing the conceptual model for
the ~roduct, and a conceptual model describes what the product should do, behave
and look like. Physical design considers the detail of the product including the col-
ors, sounds, and images to use, menu design, and icon design. Alternatives are con-
sidered at every point. You met some of the ideas for conceptual design in Chapter
2; we go into more detail about conceptual and physical design in Chapter 8.

Building interactive versions of the designs

Interaction design involves designing interactive products. The most sensible way
for users to evaluate such designs, then, is to interact with them. This requires an
interactive version of the designs to be built, but that does not mean that a software
version is required. There are different techniques for achieving "interaction," not
all of which require a working piece of software. For example, paper-based proto-
types are very quick and cheap to build and are very effective for identifying prob-
lems in the early stages of design, and through role-playing users can get a real
sense of what it will be like to interact with the product. This aspect is also covered
in Chapter 8.

Evaluating designs

Evaluation is the process of determining the usability and acceptability of the prod-
uct or design that is measured in terms of a variety of criteria including the number of
errors users make using it, how appealing it is, how well it matches the requirements,
and so on. Interaction design requires a high level of user involvement throughout
development, and this enhances the chances of an acceptable product being deliv-
ered. In most design situations you will find a number of activities concerned with

170 Chapter 6 The process of interaction design I
quality assurance and testing to make sure that the final product is "fit-for-purpose."
Evaluation does not replace these activities, but complements and enhances them.
We devote Chapters 10 through 14 to the important subject of evaluation.

The activities of developing alternative designs, building interactive versions of
the design, and evaluation are intertwined: alternatives are evaluated through the
interactive versions of the designs and the results are fed back into further design.
This iteration is one of the key characteristics of the interaction design process,
which we introduced in Chapter 1.

6.2.2 Three key characteristics of the interaction design process I
There are three characteristics that we believe should form a key part of the interac-
tion design process. These are: a user focus, specific usability criteria, and iteration.

The need to focus on users has been emphasized throughout this book, so you
will not be surprised to see that it forms a central plank of our view on the interac-
tion design process. While a process cannot, in itself, guarantee that a development
will involve users, it can encourage focus on such issues and provide opportunities
for evaluation and user feedback. I

Specific usability and user experience goals should be identified, clearly docu-
mented, and agreed upon at the beginning of the project. They help designers to
choose between different alternative designs and to check on progress as the prod-
uct is developed.

Iteration allows designs to be refined based on feedback. As users and design-
ers engage with the domain and start to discuss requirements, needs, hopes and as-
pirations, then different insights into what is needed, what will help, and what is
feasible will emerge. This leads to a need for iteration, for the activities to inform
each other and to be repeated. However good the designers are and however clear
the users may think their vision is of the required artifact, it will be necessary to re-
vise ideas in light of feedback, several times. This is particularly true if you are try-
ing to innovate. Innovation rarely emerges whole and ready to go. It takes time,
evolution, trial and error, and a great deal of patience. Iteration is inevitable be-
cause designers never get the solution right the first time (Gould and Lewis, 1985).

We shall return to these issues and expand upon them in Chapter 9.

6.3 Some practical issues
Before we consider hbw the activities and key characteristics of interaction design
can be pulled together into a coherent process, we want to consider some questions
highlighted by the discussion so far. These questions must be answered if we are
going to be able to "do" interaction design in practice. These are:

Who are the users?
What do we mea; by needs?
How do you generate alternative designs?
How do you choose among alternatives?

6.3 Some practical issues 1 71

6.3.1 Who are the users?
In Chapter 1, we said that an overarching objective of interaction design is to opti-
mize the interactions people have with computer-based products, and that this re-
quires us to support needs, match wants, and extend capabilities. We also stated
above that the activity of identifying these needs and establishing requirements was
fundamental to interaction design. However, we can't hope to get very far with this
intent until we know who the users are and what they want to achieve. As a starting
point, therefore, we need to know who we consult to find out the users' require-
ments and needs.

Identifying the users may seem like a straightforward activity, but in fact
there are many interpretations of "user." The most obvious definition is those
people who interact directly with the product to achieve a task. Most people
would agree with this definition; however, there are others who can also be
thought of as users. For example, Holtzblatt and Jones (1993) include in their
definition of "users" those who manage direct users, those who receive products
from the system, those who test the system, those who make the purchasing de-
cision, and those who use competitive products. Eason (1987) identifies three
categories of user: primary, secondary and tertiary. Primary users are those
likely to be frequent hands-on users of the system; secondary users are occa-
sional users or those who use the system through an intermediary; and tertiary
users are those affected by the introduction of the system or who will influence
its purchase.

The trouble is that there is a surprisingly wide collection of people who all
have a stake in the development of a successful product. These people are called
stakeholders. Stakeholders are "people or organizations who will be affected by
the system and who have a direct or indirect influence on the system require-
ments" (Kotonya and Sommerville, 1998). Dix et al. (1993) make an observation
that is very pertinent to a user-centered view of development, that "It will fre-
quently be the case that the formal 'client' who orders the system falls very low
on the list of those affected. Be very wary of changes which take power, influ-
ence or control from some stakeholders without returning something tangible in
its place."

Generally speaking, the group of stakeholders for a particular product is
going to be larger than the group of people you'd normally think of as users, al-
though it will of course include users. Based on the definition above, we can see
that the group of stakeholders includes the development team itself as well as its
managers, the direct users and their managers, recipients of the product's out-
put, people who may lose their jobs because of the introduction of the new prod-
uct, and so on.

For example, consider again the calendar system in Activity 6.1. According to
the description we gave you, the user group for the system has just one member:
you. However, the stakeholders for the system would also include people you
make appointments with, people whose birthdays you remember, and even com-
panies that produce paper-based calendars, since the introduction of an elec-
tronic calendar may increase competition and force them to operate differently.

172 Chapter 6 The process of interaction design

This last point may seem a little exaggerated for just one system, but if you think
of others also migrating to an electronic version, and abandoning their paper cal-
endars, then you can see how the companies may be affected by the introduction
of the system.

The net of stakeholders is really quite wide! We do not suggest that you need
to involve all of the stakeholders in your user-centered approach, but it is impor-
tant to be aware of the wider impact of any product you are developing. Identifying
the stakeholders for your project means that you can make an informed decision
about who should be involved and to what degree.

Who do you think are the stakeholders for the check-out system of a large supermarket?

Comment First, there are the check-out operators. These are the people who sit in front of the machine
and pass the customers' purchases over the bar code reader, receive payment, hand over re-
ceipts, etc. Their stake in the success and usability of the system is fairly clear and direct.
Then you have the customers, who want the system to work properly so that they are
charged the right amount for the goods, receive the correct receipt, are served quickly and
efficiently. Also, the customers want the check-out operators to be satisfied and happy in
their work so that they don't have to deal with a grumpy assistant. Outside of this group, you
then have supermarket managers and supermarket owners, who also want the assistants to
be happy and efficient and the customers to be satisfied and not complaining. They also
don't want to lose money because the system can't handle the payments correctly. Other
people who will be affected by the success of the system include other supermarket employ-
ees such as warehouse staff, supermarket suppliers, supermarket owners' families, and local
shop owners whose business would be affected by the success or failure of the system. We
wouldn't suggest that you should ask the local shop owner about requirements for the super-
market check-out system. However, you might want to talk to warehouse staff, especially if
the system links in with stock control or other functions.

6.3.2 What do we mean by "needs"?
If you had asked someone in the street in the late 1990s what she 'needed', I doubt
that the answer would have included interactive television, or a jacket which was
wired for communication, or a smart fridge. If you presented the same person with
these possibilities and asked whether she would buy them if they were available,
then the answer would have been different. When we talk about identifying needs,
therefore, it's not simply a question of asking people, "What do you need?" and
then supplying it, because people don't necessarily know what is possible (see
Suzanne Robertson's interview at the end of Chapter 7 for "un-dreamed-of" re-
quirements). Instead, we have to approach it by understanding the characteristics
and capabilities of the users, what they are trying to achieve, how they achieve it
currently, and whether they would achieve their goals more effectively if they were
supported differently.

There are many dimensions along which a user's capabilities and characteris-
tics may vary, and that will have an impact on the product's design. You have met

6.3 Some practical issues 173

some of these in Chapter 3. For example, a person's physical characteristics may af-
fect the design: size of hands may affect the size and positioning of input buttons,
and motor abilities may affect the suitability of certain input and output devices;
height is relevant in designing a physical kiosk, for example; and strength in design-
ing a child's toy-a toy should not require too much strength to operate, but may
require strength greater than expected for the target age group to change batteries
or perform other operations suitable only for an adult. Cultural diversity and expe-
rience may affect the terminology the intended user group is used to, or how ner-
vous about technology a set of users may be.

If a product is a new invention, then it can be difficult to identify the users and
representative tasks for them; e.g., before microwave ovens were invented, there
were no users to consult about requirements and there were no representative
tasks to identify. Those developing the oven had to imagine who might want to use
such an oven and what they might want to do with it.

It may be tempting for designers simply to design what they would like, but
their ideas would not necessarily coincide with those of the target user group. It is
imperative that representative users from the real target group be consulted. For
example, a company called Netpliance was developing a new "Internet appli-
ance," i.e., a product that would seamlessly integrate all the services necessary for
the user to achieve a specific task on the Internet (Isensee et al., 2000). They took
a user-centered approach and employed focus group studies and surveys to under-
stand their customers' needs. The marketing department led these efforts, but de-
velopers observed the focus groups to learn more about their intended user group.
Isensee et al. (p. 60) observe that "It is always tempting for developers to create
products they would want to use or similar to what they have done before. How-
ever, in the Internet appliance space, it was essential to develop for a new audi-
ence that desires a simpler product than the computer industry has previously
provided."

In these circumstances, a good indication of future behavior is current or
past behavior. So it is always useful to start by understanding similar behavior
that is already established. Apart from anything else, introducing something new
into people's lives, especially a new "everyday" item such as a microwave oven,
requires a culture change in the target user population, and it takes a long time
to effect a culture change. For example, before cell phones were so widely avail-
able there were no users and no representative tasks available for study, per se.
But there were standard telephones and so understanding the tasks people per-
form with, and in connection with, standard telephones was a useful place to
start. Apart from making a telephone call, users also look up people's numbers,
take messages for others not currently available, and find out the number of the
last person to ring them. These kinds of behavior have been translated into
memories for the telephone, answering machines, and messaging services for
mobiles. In order to maximize the benefit of e-commerce sites, traders have
found that referring back to customers' non-electronic habits and behaviors can
be a good basis for enhancing e-commerce activity (CHI panel, 2000; Lee et al.,
2000).

I 174 Chapter 6 The process of interaction design

6.3.3 How do you generate alternative designs?
A common human tendency is to stick with something that we know works. We
probably recognize that a better solution may exist out there somewhere, but it's
very easy to accept this one because we know it works-it's "good enough." Set-
tling for a solution that is good enough is not, in itself, necessarily "bad," but it may
be undesirable because good alternatives may never be considered, and considering
alternative solutions is a crucial step in the process of design. But where do these
alternative ideas come from?

One answer to this question is that they come from the individual designer's
flair and creativity. While it is certainly true that some people are able to produce
wonderfully inspired designs while others struggle to come up with any ideas at all,
very little in this world is completely new. Normally, innovations arise through
cross-fertilization of ideas from different applications, the evolution of an existing
product through use and observation, or straightforward copying of other, similar
products. For example, if you think of something commonly believed to be an "in-
vention," such as the steam engine, this was in fact inspired by the observation that
the steam from a kettle boiling on the stove lifted the lid. Clearly there was an

I amount of creativity and engineering involved in making the jump from a boiling
kettle to a steam engine, but the kettle provided the inspiration to translate experi- I

ence gained in one context into a set of principles that could be applied in another.
As an example of evolution, consider the word processor. The capabilities of suites
of office software have gradually increased from the time they first appeared. Ini-
tially, a word processor was just an electronic version of a typewriter, but gradually
other capabilities, including the spell-checker, thesaurus, style sheets, graphical ca-
pabilities, etc., were added.

6.3 Some practical issues 1 75

So although creativity and invention are often wrapped in mystique, we do un-
derstand something of the process and of how creativity can be enhanced or in-
spired. We know, for instance, that browsing a collection of designs will inspire
designers to consider alternative perspectives, and hence alternative solutions. The
field of case-based reasoning (Maher and Pu, 1997) emerged from the observation
that designers solve new problems by drawing on knowledge gained from solving
previous similar problems. As Schank (1982; p. 22) puts it, "An expert is someone
who gets reminded of just the right prior experience to help him in processing his
current experiences." And while those experiences may be the designer's own, they
can equally well be others'.

A more pragmatic answer to this question, then, is that alternatives come from
looking at other, similar designs, and the process of inspiration and creativity can
be enhanced by prompting a designer's own experience and by looking at others'
ideas and solutions. Deliberately seeking out suitable sources of inspiration is a
valuable step in any design process. These sources may be very close to the in-
tended new product, such as competitors' products, or they may be earlier versions
of similar systems, or something completely different.

nsider again the calendar system introduced at the beginning of the chapter. Reflecting
the process again, what do you think inspired your outline design? See if you can identify

any elements within it that you believe are truly innovative.

Comment For my design, I haven't seen an electronic calendar, although I have seen plenty of other
software-based systems. My main sources of inspiration were my current paper-based books.

Some of the things you might have been thinking of include your existing paper-based
calendar, and other pieces of software you commonly use and find helpful or easy to use in
some way. Maybe you already have access to an electronic calendar, which will have given
you some ideas, too. However, there are probably other aspects that make the design some-
how unique to you and may be innovative to a greater or lesser degree.

All this having been said, under some circumstances the scope to consider alterna-
tive designs may be limited. Design is a process of balancing constraints and con-
stantly trading off one set of requirements with another, and the constraints may be
such that there are very few viable alternatives available. As another example, if
you are designing a software system to run under the Windows operating system,
then elements of the design will be prescribed because you must conform to the
Windows "look and feel," and to other constraints intended to make Windows pro-
grams consistent for the user. We shall return to style guides and standards in
Chapter 8.

If you are producing an upgrade to an existing system, then you may face other
constraints, such as wanting to keep the familiar elements of it and retain the same
"look and feel." However, this is not necessarily a rigid rule. Kent Sullivan reports
that when designing the Windows 95 operating system to replace the Windows 3.1
and Windows for Workgroups 3.11 operating systems, they initially focused too
much on consistency with the earlier versions (Sullivan, 1996).

176 Chapter 6 The process of interaction design

1 6.3 Some ~ractical issues 1 77

- - - - - - - - - - - -

178 Chapter 6 The process of interaction design

6.3 Some practical issues 179

6.3.4 How do you choose among alternative designs?
Choosing among alternatives is about making design decisions: Will the device use
keyboard entry or a touch screen? Will the device provide an automatic memory
function or not? These decisions will be informed by the information gathered
about users and their tasks, and by the technical feasibility of an idea. Broadly
speaking, though, the decisions fall into two categories: those that are about exter-
nally visible and measurable features, and those that are about characteristics in-
ternal to the system that cannot be observed or measured without dissecting it.
For example, externally visible and measurable factors for a building design in-
clude the ease of access to the building, the amount of natural light in rooms, the
width of corridors, and the number of power outlets. In a photocopier, externally
visible and measurable factors include the physical size of the machine, the speed
and quality of copying, the different sizes of paper it can use, and so on. Underly-
ing each of these factors are other considerations that cannot be observed or stud-
ied without dissecting the building or the machine. For example, the number of

I 180 Chapter 6 The process of interaction design

power outlets will be dependent on how the wiring within the building is designed
and the capacity of the main power supply; the choice of materials used in a pho-
tocopier may depend on its friction rating and how much it deforms under certain
conditions.

In an interactive product there are similar factors that are externally visible
and measurable and those that are hidden from the users' view. For example, ex-
actly why the response time for a query to a database (or a web page) is, say, 4 sec-
onds will almost certainly depend on technical decisions made when the database
was constructed, but from the users' viewpoint the important observation is the fact
that it does take 4 seconds to respond.

In interaction design, the way in which the users interact with the product is
considered the driving force behind the design and so we concentrate on the exter-
nally visible and measurable behavior. Detailed internal workings are important
only to the extent that they affect the external behavior. This does,not mean that
design decisions concerning a system's internal behavior are any less important:
however, the tasks that the user will perform should influence design decisions no
less than technical issues.

So, one answer to the question posed above is that we choose between alterna-
tive designs by letting users and stakeholders interact with them and by discussing
their experiences, preferences and suggestions for improvement. This is fundamen-
tal to a user-centered approach to development. This in turn means that the de-
signs must be available in a form that can be reasonably evaluated with users, not
in technical jargon or notation that seems impenetrable to them.

One form traditionally used for communicating a design is documentation, e.g.,
a description of how something will work or a diagram showing its components.
The trouble is that a static description cannot capture the dynamics of behavior,
and for an interaction device we need to communicate to the users what it will be
like to actually operate it.

In many design disciplines, prototyping is used to overcome potential client
misunderstandings and to test the technical feasibility of a suggested design and its
production. Prototyping involves producing a limited version of the product with
the purpose of answering specific questions about the design's feasibility or appro-
priateness. Prototypes give a better impression of the user experience than simple
descriptions can ever do, and there are different kinds of prototyping that are suit-
able for different stages of development and for eliciting different kinds of infor-
mation. One experience illustrating the benefits of prototyping is described in Box
6.2. So one important aspect of choosing among alternatives is that prototypes
should be built and evaluated by users. We'll revisit the issue of prototyping in
Chapter 8.

Another basis on which to choose between alternatives is "quality," but this
requires a clear understanding of what "quality" means. People's views of what is
a quality product vary, and we don't always write it down. Whenever we use any-
thing we have some notion of the level of quality we are expecting, wanting, or
needing. Whether this level of quality is expressed formally or informally does not
matter. The point is that it exists and we use it consciously or subconsciously to
evaluate alternative items. For example, if you have to wait too long to download

6.3 Some practical issues 181

a web page, then you are likely to give up and try a different site-you are apply-
ing a certain measure of quality associated with the time taken to download the
web page. If one cell phone makes it easy to perform a critical function while an-
other involves several complicated key sequences, then you are likely to buy the
former rather than the latter. You are applying a quality criterion concerned with
efficiency.

Now, if you are the only user of a product, then you don't necessarily have
to express your definition of "quality" since you don't have to communicate it to
anyone else. However, as we have seen, most projects involve many different
stakeholder groups, and you will find that each of them has a different definition
of quality and different acceptable limits for it. For example, although all stake-
holders may agree on targets such as "response time will be fast" or "the menu
structure will be easy to use," exactly what each of them means by this is likely
to vary. Disputes are inevitable when, later in development, it transpires that
"fast" to one set of stakeholders meant "under a second," while to another it
meant "between 2 and 3 seconds." Capturing these different views in clear un-
ambiguous language early in development takes you halfway to producing a
product that will be regarded as "good" by all your stakeholders. It helps to clar-
ify expectations, provides a benchmark against which products of the develop-
ment process can be measured, and gives you a basis on which to choose among
alternatives.

The process of writing down formal, verifiable-and hence measurable-usability
criteria is a key characteristic of an approach to interaction design called usability en-
gineering that has emerged over many years and with various proponents (Whiteside

182 Chapter 6 The process of interaction design

et al., 1988; Nielsen, 1993). Usability engineering involves specifying quantifiable
measures of product performance, documenting them in a usability specification,
and assessing the product against them. One way in which this approach is used is to
make changes to subsequent versions of a system based on feedback from carefully
documented results of usability tests for the earlier version. We shall return to this
idea later when we discuss evaluation.

Consider the calendar system that you designed in Activity 6.1. Suggest some usability crite-
ria that you could use to determine the calendar's quality. You will find it helpful to think in
terms of the usability goals introduced in Chapter 1: effectiveness, efficiency, safety, utility,
learnability, and memorability. Be as specific as possible. Check your criteria by considering
exactly what you would measure and how you would measure its performance.

Having done that, try to do the same thing for the user experience goals introduced in
Chapter 1; these relate to whether a system is satisfying, enjoyable, motivating, rewarding,
and so on.

Comment Finding measurable characteristics for some of these is not easy. Here are some suggestions,
but you may have found others. Note that the criteria must be measurable and very specific.

Effectiveness: Identifying measurable criteria for this goal is particularly difficult since
it is a combination of the other goals. For example, does the system support you in
keeping appointments, taking notes, and so on. In other words, is the calendar used?
EBciency: Assuming that there is a search facility in the calendar, what is the response
time for finding a specific day or a specific appointment?
Safety: How often does data get lost or does the user press the wrong button? This may
be measured, for example, as the number of times this happens per hour of use.
Utility: How many functions offered by the calendar are used every day, how many
every week, how many every month? How many tasks are difficult to complete in a
reasonable time because functionality is missing or the calendar doesn't support the
right subtasks?
Learnability: How long does it take for a novice user to be able to do a series of set
tasks, e.g., make an entry into the calendar for the current date, delete an entry from
the current date, edit an entry in the following day?
Memorability: If the calendar isn't used for a week, how many functions can you re-
member how to perform? How long does it take you to remember how to perform
your most frequent task?

Finding measurable characteristics for the user experience criteria is even harder, though.
How do you measure satisfaction, fun, motivation or aesthetics? What is entertaining to one
person may be boring to another; these kinds of criteria are subjective, and so cannot be
measured objectively.

6.4 Lifecycle models: showing how the activities are related
Understanding what activities are involved in interaction design is the first step to
being able to do it, but it is also important to consider how the activities are related

6.4 Lifecycle models: showing how the activities relate 183

to one another so that the full development process can be seen. The term lifecycle
model1 is used to represent a model that captures a set of activities and how they
are related. Sophisticated models also incorporate a description of when and how
to move from one activity to the next and a description of the deliverables for each
activity. The reason such models are popular is that they allow developers, and par-
ticularly managers, to get an overall view of the development effort so that
progress can be tracked, deliverables specified, resources allocated, targets set, and
SO on.

Existing models have varying levels of sophistication and complexity. For pro-
jects involving only a few experienced developers, a simple process would probably
be adequate. However, for larger systems involving tens or hundreds of developers
with hundreds or thousands of users, a simple process just isn't enough to provide
the management structure and discipline necessary to engineer a usable product.
So something is needed that will provide more formality and more discipline. Note
that this does not mean that innovation is lost or that creativity is stifled. It just I

means that a structured process is used to provide a more stable framework for
creativity.

However simple or complex it appears, any lifecycle model is a simplified
version of reality. It is intended as an abstraction and, as with any good ab-
straction, only the amount of detail required for the task at hand should be in-
cluded. Any organization wishing to put a lifecycle model into practice will
need to add detail specific to its particular circumstances and culture. For ex-
ample, Microsoft wanted to maintain a small-team culture while also making
possible the development of very large pieces of software. To this end, they
have evolved a process that has been called "synch and stabilize," as described
in Box 6.3.

In the next subsection, we introduce our view of what a lifecycle model for in-
teraction design might look like that incorporates the four activities and the three
key characteristics of the interaction design process discussed above. This will form
the basis of our discussion in Chapters 7 and 8. Depending on the kind of system
being developed, it may not be possible or appropriate to follow this model for
every element of the system, and it is certainly true that more detail would be re-
quired to put the lifecycle into practice in a real project.

Many other lifecycle models have been developed in fields related to interac-
tion design, such as software engineering and HCI, and our model is evolved from
these ideas. To put our interaction design model into context we include here a de-
scription of five lifecycle models, three from software engineering and two from
HCI, and consider how they relate to it.

'Somme~ille (2001) uses the term process model to mean what we call a lifecycle model, and refers to
the waterfall model as the software lifecycle. Pressman (1992) talks about paradigms. In HCI the term
"lifecycle model" is used more widely. For this reason, and because others use "process model" to
represent something that is more detailed than a lifecycle model (e.g., Comer, 1997) we have chosen to
use lifecycle model.

184 Chapter 6 The process of interaction design

6.4 Lifecycle models: showing how the activities relate 185

I 186 Chapter 6 The process of interaction design

I 6.4.1 A simple lifecycle model for interaction design
We see the activities of interaction design as being related as shown in Figure 6.7.
This model incorporates iteration and encourages a user focus. While the outputs
from each activity are not specified in the model, you will see in Chapter 7 that our
description of establishing requirements includes the need to identify specific us-
ability criteria.

The model is not intended to be prescriptive; that is, we are not suggesting
that this is how all interactive products are or should be developed. It is based on
our observations of interaction design and on information we have gleaned in the
research for this book. It has its roots in the software engineering and HCI Iifecy-
cle models described below, and it represents what we believe is practiced in the
field.

Most projects start with identifying needs and requirements. The project may
have arisen because of some evaluation that has been done, but the lifecycle of the
new (or modified) product can be thought of as starting at this point. From this ac-
tivity, some alternative designs are generated in an attempt to meet the needs and
requirements that have been identified. Then interactive versions of the designs
are developed and evaluated. Based on the feedback from the evaluations, the
team may need to return to identifying needs or refining requirements, or it may
go straight into redesigning. It may be that more than one alternative design fol-
lows this iterative cycle in parallel with others, or it may be that one alternative at
a time is considered. Implicit in this cycle is that the final product will emerge in an
evolutionary fashion from a rough initial idea through to the finished product. Ex-
actly how this evolution happens may vary from project to project, and we return
to this issue in Chapter 8. The only factor limiting the number of times through
the cycle is the resources available, but whatever the number is, development ends
with an evaluation activity that ensures the final product meets the prescribed us-
ability criteria.

Final product

Figure 6.7 A simple interaction design model.

6.4 Lifecycle models: showing how the activities relate 187 I
6.4.2 Lifecycle models in software engineering I

Software engineering has spawned many lifecycle models, including the water-
fall, the spiral, and rapid applications development (RAD). Before the waterfall
was first proposed in 1970, there was no generally agreed approach to software
development, but over the years since then, many models have been devised, re-
flecting in part the wide variety of approaches that can be taken to developing
software. We choose to include these specific lifecycle models for two reasons:
First, because they are representative of the models used in industry and they
have all proved to be successful, and second, because they show how the empha-
sis in software development has gradually changed to include a more iterative, 1
user-centered view.

The waterfall lifecycle model

The waterfall lifecycle was the first model generally known in software engineer-
ing and forms the basis of many lifecycles in use today. This is basically a linear
model in which each step must be completed before the next step can be started
(see Figure 6.8). For example, requirements analysis has to be completed before

Figure 6.8 The waterfall lifecycle model of software development.

188 Chapter 6 The process of interaction design

design can begin. The names given to these steps varies, as does the precise defi-
nition of each one, but basically, the lifecycle starts with some requirements
analysis, moves into design, then coding, then implementation, testing, and fi-
nally maintenance. One of the main flaws with this approach is that require-
ments change over time, as businesses and the environment in which they
operate change rapidly. This means that it does not make sense to freeze re-
quirements for months, or maybe years, while the design and implementation
are completed.

Some feedback to earlier stages was acknowledged as desirable and indeed
practical soon after this lifecycle became widely used (Figure 6.8 does show some
limited feedback between phases). But the idea of iteration was not embedded in
the waterfall's philosophy. Some level of iteration is now incorporated in most ver-
sions of the waterfall, and review sessions among developers are commonplace.
However, the opportunity to review and evaluate with users was not built into this
model.

The spiral lifecycle model
For many years, the waterfall formed the basis of most software developments, but
in 1988 Barry Boehm (1988) suggested the spiral model of software development
(see Figure 6.9). Two features of the spiral model are immediately clear from Fig-
ure 6.9: risk analysis and prototyping. The spiral model incorporates them in an it-
erative framework that allows ideas and progress to be repeatedly checked and
evaluated. Each iteration around the spiral may be based on a different lifecycle
model and may have different activities.

In the spiral's case, it was not the need for user involvement that inspired the
introduction of iteration but the need to identify and control risks. In Boehm's ap-
proach, development plans and specifications that are focused on the risks involved
in developing the system drive development rather than the intended functionality,
as was the case with the waterfall. Unlike the waterfall, the spiral explicitly encour-
ages alternatives to be considered, and steps in which problems or potential prob-
lems are encountered to be re-addressed.

The spiral idea has been used by others for interactive devices (see Box 6.4). A
more recent version of the spiral, called the WinWin spiral model (Boehm et al.,
1998), explicitly incorporates the identification of key stakeholders and their re-
spective "win" conditions, i.e., what will be regarded as a satisfactory outcome for
each stakeholder group. A period of stakeholder negotiation to ensure a "win-win"
result is included.

Rapid Applications Development (RAD)
During the 1990s the drive to focus upon users became stronger and resulted in a
number of new approaches to development. The Rapid Applications Development
(RAD) approach attempts to take a user-centered view and to minimize the risk
caused by requirements changing during the course of the project. The ideas be-

6.4 Lifecycle models: showing how the activities relate 189

Review

Cumulative

through
steps

----___

Plan next phases

Develop, verify
next-level product

Figure 6.9 The spiral lifecycle model of software development.

hind RAD began to emerge in the early 1990s, also in response to the inappropri-
ate nature of the linear lifecycle models based on the waterfall. Two key features of
a RAD project are:

Time-limited cycles of approximately six months, at the end of which a sys-
tem or partial system must be delivered. This is called time-boxing. In effect,
this breaks down a large project into many smaller projects that can deliver
products incrementally, and enhances flexibility in terms of the development
techniques used and the maintainability of the final system.

190 Chapter 6 The process of interaction design

JAD (Joint Application Development) workshops in which users and devel-
opers come together to thrash out the requirements of the system (Wood
and Silver, 1995). These are intensive requirements-gathering sessions in
which difficult issues are faced and decisions are made. Representatives from
each identified stakeholder group should be involved in each workshop so
that all the relevant views can be heard.

A basic RAD lifecycle has five phases (see Figure 6.10): project set-up, JAD
workshops, iterative design and build, engineer and test final prototype, implementa-
tion review. The popularity of RAD has led to the emergence of an industry-
standard RAD-based method called DSDM (Dynamic Systems Development
Method) (Millington and Stapleton, 1995). This was developed by a non-profit-mak-
ing DSDM consortium made up of a group of companies that recognized the need for
some standardization in the field. The first of nine principles stated as underlying
DSDM is that "active user involvement is imperative." The DSDM lifecycle is more
complicated than the one we've shown here. It involves five phases: feasibility study,
business study, functional model iteration, design and build iteration, and implemen-
tation. This is only a generic process and must be tailored for a particular organization. ~

w closely do you think the RAD lifecycle model relates to the interaction design model
scribed in Section 6.4.1?

Comment RAD and DSDM explicitly incorporate user involvement, evaluation and iteration. User in-
volvement, however, appears to be limited to the JAD workshop, and iteration appears to
be limited to the design and build phase. The philosophy underlying the interaction design
model is present, but the flexibility appears not to be. Our interaction design process would
be appropriately used within the design and build stage.

Figure 6.10 A basic RAD lifecycle
model of software development.

6.4 Lifecycle models: showing how the activities relate 1 91

1 92 Chapter 6 The process of interaction design

Russlan Peace hoops Head Toward Kosovo
fRI JUN $1 08W6037 BDT 1-

6.4.3 Lifecycle models in HCI
Another of the traditions from which interaction design has emerged is the field of
HCI (human-computer interaction). Fewer lifecycle models have arisen from this
field than from software engineering and, as you would expect, they have a
stronger tradition of user focus. We describe two of these here. The first one, the
Star, was derived from empirical work on understanding how designers tackled
HCI design problems. This represents a very flexible process with evaluation at its
core. In contrast, the second one, the usability engineering lifecycle, shows a more
structured approach and hails from the usability engineering tradition.

The Star Lifecycle Model
About the same time that those involved in software engineering were looking for
alternatives to the waterfall lifecycle, so too were people involved in HCI looking
for alternative ways to support the design of interfaces. In 1989, the Star lifecycle

6.4 Lifecycle models: showing how the activities relate 193 I

Figure 6.13 The Star lifecycle
model.

model was proposed by Hartson and Hix (1989) (see Figure 6.13). This emerged
from some empirical work they did looking at how interface designers went about
their work. They identified two different modes of activity: analytic mode and syn-
thetic mode. The former is characterized by such notions as top-down, organizing,
judicial, and formal, working from the systems view towards the user's view; the
latter is characterized by such notions as bottom-up, free-thinking, creative and ad
hoc, working from the user's view towards the systems view. Interface designers
move from one mode to another when designing. A similar behavior has been ob-
served in software designers (Guindon, 1990).

Unlike the lifecycle models introduced above, the Star lifecycle does not specify
any ordering of activities. In fact, the activities are highly interconnected: you can
move from any activity to any other, provided you first go through the evaluation
activity. This reflects the findings of the empirical studies. Evaluation is central to
this model, and whenever an activity is completed, its result(s) must be evaluated.
So a project may start with requirements gathering, or it may start with evaluating
an existing situation, or by analyzing existing tasks, and so on.

The Star lifecycle model has not been used widely and successfully for large projects in indus-
try. Consider the benefits of lifecycle models introduced above and suggest why this may be.

Comment One reason may be that the Star lifecycle model is extremely flexible. This may be how de-
signers work in practice, but as we commented above, lifecycle models are popular because
"they allow developers, and particularly managers, to get an overall view of the develop-
ment effort so that progress can be tracked, deliverables specified, resources allocated, tar-
gets set, and so on." With a model as flexible as the Star lifecycle, it is difficult to control
these issues without substantially changing the model itself.

The Usability Engineering Lifecycle

The Usability Engineering Lifecycle was proposed by Deborah Mayhew in 1999
(Mayhew, 1999). Many people have written about usability engineering, and as

- -

194 Chapter 6 The process of interaction design

Figure 6.14 The Usability Engineering Lifecycle.

6.4 Lifecycle models: showing how the activities relate 195

0 UETask

T Development Task

() Decision Point

Documentation

+ Complex Applications

- -t Simple Applications
(e.g. websites)

Figure 6.14 (continued). I

Mayhew herself says, "I did not invent the concept of a Usability Engineering Life-
cycle. Nor did I invent any of the Usability Engineering tasks included in the lifecy-
cle". However, what her lifecycle does provide is a holistic view of usability
engineering and a detailed description of how to perform usability tasks, and it
specifies how usability tasks can be integrated into traditional software develop-
ment lifecycles. It is therefore particularly helpful for those with little or no exper-
tise in usability to see how the tasks may be performed alongside more traditional
software engineering activities. For example, Mayhew has linked the stages with a
general development approach (rapid prototyping) and a specific method (object-
oriented software engineering (OOSE, Jacobson et al, 1992)) that have arisen from
software engineering.

The lifecycle itself has essentially three tasks: requirements analysis, design1
testingldevelopment, and installation, with the middle stage being the largest and
involving many subtasks (see Figure 6.14). Note the production of a set of usability
goals in the first task. Mayhew suggests that these goals be captured in a style guide
that is then used throughout the project to help ensure that the usability goals are
adhered to.

This lifecycle follows a similar thread to our interaction design model but in-
cludes considerably more detail. It includes stages of identifying requirements, de-
signing, evaluating, and building prototypes. It also explicitly includes the style
guide as a mechanism for capturing and disseminating the usability goals of the
project. Recognizing that some projects will not require the level of structure pre-
sented in the full lifecycle, Mayhew suggests that some substeps can be skipped if
they are unnecessarily complex for the system being developed.

Study the usability engineering lifecycle and identify how this model differs from our inter-
action design model described in Section 6.4.1, in terms of the iterations it supports.

Comment One of the main differences between Mayhew's model and ours is that in the former the it-
eration between design and evaluation is contained within the second phase. Iteration be-
tween the design/testldevelopment phase and the requirements analysis phase occurs only
after the conceptual model and the detailed designs have been developed, prototyped, and

196 Chapter 6 The process of interaction design

evaluated one at a time. Our version models a return to the activity of identifying needs and
establishing requirements after evaluating any element of the design.

Assignment
Nowadays, timepieces (such as clocks, wristwatches etc) have a variety of functions. They not
only tell the time and date but they can speak to you, remind you when it's time to do some-
thing, and provide a light in the dark, among other things. Mostly, the interface for these de-
vices, however, shows the time in one of two basic ways: as a digital number such as 23:40 or
through an analog display with two or three hands-one to represent the hour, one for the
minutes, and one for the seconds.

In thb assignment, we want you to design an innovative timepiece for your own use. This
could be in the form of a wristwatch, a mantelpiece clock, an electronic clock, or any other
kind of clock you fancy. Your goal is to be inventive and exploratory. We have broken this as- I
signment down into the following steps to make it clearer: I

(a) Think about the interactive product you are designing: what do you want it to do I
for you? Find 3-5 potential users and ask them what they would want. Write a list
of requirements for the clock, together with some usability criteria based on the de- 1
finition of usability used in Chapter 1.

(b) Look around for similar devices and seek out other sources of inspiration that you
might find helpful. Make a note of any findings that are interesting, useful or in-
sightful.

(c) Sketch out some initial designs for the clock. Try to develop at least two distinct al-
ternatives that both meet your set of requirements.

(d) Evaluate the two designs, using your usability criteria and by role playing an interac-
tion with your sketches. Involve potential users in the evaluation, if possible. Does it
do what you want? Is the time or other information being displayed always clear?
Design is iterative, so you may want to return to earlier elements of the process be-
fore you choose one of your alternatives.

Once you have a design with which you are satisfied, you can send it to us and we shall
post a representative sample of those we receive to our website. Details of how to format
your submission are available from our website.

Summary
In this chapter, we have looked at the process of interaction design, i.e., what activities are
required in order to design an interactive product, and how lifecycle models show the rela-
tionships between these activities. A simple interaction design model consisting of four ac-
tivities was introduced and issues surrounding the identification of users, generating
alternative designs, and evaluating designs were discussed. Some lifecycle models from soft-
ware engineering and HCI were introduced.

Key points
The interaction design process consists of four basic activities: identifying needs and es-
tablishing requirements, developing alternative designs that meet those requirements,
building interactive versions of the designs so that they can be communicated and as-
sessed, and evaluating them.

Further reading 1 97

Key characteristics of the interaction design process are explicit incorporation of user in-
volvement, iteration, and specific usability criteria.
Before you can begin to establish requirements, you must understand who the users are
and what their goals are in using the device.
Looking at others' designs provides useful inspiration and encourages designers to con-
sider alternative design solutions, which is key to effective design.
Usability criteria, technical feasibility, and users' feedback on prototypes can all be used
to choose among alternatives.
Prototyping is a useful technique for facilitating user feedback on designs at all stages.
Lifecycle models show how development activities relate to one another.
The interaction design process is complementary to lifecycle models from other fields.

Further reading
RUDISILL, M., LEWIS, C., POLSON, P. B., AND MCKAY, T. D.
(1995) (eds.) Human-Computer Interface Design: Success
Stories, Emerging Methods, Real-World Context. San Fran-
cisco: Morgan Kaufmann. This collection of papers describes
the application of different approaches to interface design.
Included here is an account of the Xerox Star development,
some advice on how to choose among methods, and some
practical examples of real-world developments.
BERGMAN, ERIC (2000) (ed.) Information Appliances and Be-
yond. San Francisco: Morgan Kaufmann. This book is an
edited collection of papers which report on the experience of
designing and building a variety of 'information appliances',
i.e., purpose-built computer-based products which perform a
specific task. For example, the Palm Pilot, mobile telephones,
a vehicle navigation system, and interactive toys for children.
MAYHEW, DEBORAH J. (1999) The Usability Engineering
Lifecycle. San Francisco: Morgan Kaufmann. This is a very

practical book about product user interface design. It ex-
plains how to perform usability tasks throughout develop-
ment and provides useful examples along the way to
illustrate the techniques. It links in with two software devel-
opment based methods: rapid prototyping and object-ori-
ented software engineering.
SOMMERVILLE, IAN (2001) SofnYare Engineering (6th edi-
tion). Harlow, UK: Addison-Wesley. If you are interested in
pursuing the software engineering aspects of the lifecycle
models section, then this book provides a useful overview of
the main models and their purpose.
NIELSEN, JAKOB (1993) Usability Engineering. San Fran-
cisco: Morgan Kaufmann. This is a seminal book on usability
engineering. If you want to find out more about the philoso-
phy, intent, history, or pragmatics of usability engineering,
then this is a good place to start.

198 Chapter 6 The process of interaction design

Department, developing a
program to enable artist-designers to develop and apply their
traditional skills and knowledge to the design of all kinds of
interactive products and systems.
GC: I believe that things should work but they
should also delight. In the past, when it was really dif-
ficult to make things work, that was what people con-
centrated on. But now it's much easier to make
software and much easier to make hardware. We've
got a load of technologies but they're still often not
designed for people-and they're certainly not very
enjoyable to use. If we think about other things in our
life, our clothes, our furniture, the things we eat with,
we choose what we use because they have a meaning
beyond their practical use. Good design is partly
about working really well, but it's also about what
something looks like, what it reminds us of, what it
refers to in our broader cultural environment. It's this
side that interactive systems haven't really addressed
yet. They're only just beginning to become part of
culture. They are not just a tool for professionals any
more, but an environment in which we live.

HS: How do you think we can improve things?
GC: The parallel with architecture is quite an inter-
esting one. In architecture, a great deal of time and
expense is put into the initial design; I don't think
very much money or time is put into the initial design
of software. If you think of the big software engineer-
ing companies, how many people work in the design
side rather than on the implementation side?

HS: When you say design do you mean conceptual
design, or task design, or something else?
GC: I mean all phases of design. Firstly there's re-
search-finding out about people. This is not neces-
sarily limited to finding out about what they want
necessarily, because if we're designing new things,
they are probably things people don't even know they

could have. At the Royal College of Art we tried to
work with users, but to be inspired by them, and not
constrained by what they know is possible.

The second stage is thinking, "What should this
thing we are designing do?" You could call that con-
ceptual design. Then a third stage is thinking how do
you represent it, how do you give it form? And then
the fourth stage is actually crafting the interface--ex-
actly what color is this pixel? Is this type the right
size, or do you need a size bigger? How much can you
get on a screen?-all those things about the details.

One of the problems companies have is that the
feedback they get is. "I wish it did x." Software looks
as if it's designed, not with a basic model of how it
works that is then expressed on the interface, but as a
load of different functions that are strung together.
The desktop interface, although it has great advan- I
tages, encourages the idea that you have a menu and
you can just add a few more bits when people want
more things. In today's word processors, for instance, ~
there isn't a .clear conceptual model about how it I

works, or an underlying theory people can use to rea-
son about why it is not working in the way they expect.

HS: So in trying to put more effort into the design as-
pect of things, do you think we need different people
in the team?
GC: Yes. People in the software field tend to think that
designers are people who know how to give the product
form, which of course is one of the things they do. But a
graphic designer, for instance, is somebody who also
thinks at a more strategic level, "What is the message
that these people want to get over and to whom?" and
then, "What is the best way to give form to a message
like that?" The part you see is the beautiful design, the
lovely poster or record sleeve, or elegant book, but be-
hind that is a lot of thinking about how to communicate
ideas via a particular medium.

HS: If you've got people from different disciplines,
have you experienced difficulties in communication?
GC: Absolutely. I think that people from different
disciplines have different values, so different results
and different approaches are valued. People have dif-
ferent temperaments, too, that have led them to the
different fields in the first place, and they've been
trained in different ways. In my view the big differ-

ence between the way engineers are trained and the
way designers are trained is that engineers are trained
to focus in on a solution from the beginning whereas
designers are trained to focus out to begin with and
then focus in. They focus out and try lots of different
alternatives, and they pick some and try them out to
see how they go. Then they refine down. This is very
hard for both the engineers and the designers because
the designers are thinking the engineers are trying to
hone in much too quickly and the engineers can't
bear the designers faffing about. They are trained to
get their results in a completely different way.

HS: Is your idea to make each more tolerant of the
other?
GC: Yes, my idea is not to try to make renaissance
people, as I don't think it's feasible. Very few people
can do everything weU. I think the ideal team is made
up of people who are really confident and good at what
they do and open-mined enough to realize there are
very different approaches. There's the scientific ap-
proach, the engineering approach, the design approach.
All three are different and that's their value-you
don't want everybody to be the same. The best combi-
nation is where you have engineers who understand
design and designers who understand engineering.

It's important that people know their limitations
too. If you realize that you need an ergonomist, then
you go and find one and you hire them to consult for
you. So you need to know what you don't know as
well as what you do.

HS: What other aspects of traditional design do you
think help with interaction design?
G C I think the ability to visualize things. It allows
people to make quick prototypes or models or sketches
so that a group of people can talk about something
concrete. I think that's invaluable in the process. I
think also making things that people like is just one of
the things that good designers have a feel for.

HS: Do you mean aesthetically like or like in its
whole sense?
GC: In its whole sense. Obviously there's the aes-
thetic of what something looks like or feels like but

Interview 199

there's also the aesthetic of how it works as well. You
can talk about an elegant way of doing something as
well as an elegant look.

HS: Another trait I've seen in designers is being pro-
tective of their design.
GC: I think that is both a vice and a virtue. In order
to keep a design coherent you need to keep a grip on
the whole and to push it through as a whole. Other-
wise it can happen that people try to make this a bit
smaller and cut bits out of that, and so on, and before
you know where you are the coherence of the design
is lost. It is quite difficult for a team to hold a coher-
ent vision of a design. If you think of other design
fields, like film-making, for instance, there is one di-
rector and everybody accepts that it's the director's
vision. One of the things that's wrong with products
like Microsoft Word, for instance, is that there's no
coherent idea in it that makes you t

hi

nk, "Oh yes, I
understand how this fits with that."

Design is always a balance between things that
work well and things that look good, and the ideal de-
sign satisfies everything, but in most designs you have
to make trade-offs. If you're making a game it's more
important that people enjoy it and that it looks good
than to worry if some of it's a bit difficult. If you're
making a fighter cockpit then the most important
thing is that pilots don't fall out of the sky, and so this
informs the trade-offs you make. The question is, who
decides how to decide the criteria for the tradeoffs
that inevitably need to be made. This is not a matter
of engineering: it's a matter of values--cultural, emo-
tional, aesthetic.

HS: 1 know this is a controversial issue for some de-
signers. Do you think users should be part of the de-
sign team?
GC: No, I don't. I think it's an abdication of re-
sponsibility. Users should definitely be involved as a
source of inspiration, suggesting ideas, evaluating
proposals-saying, "Yes, we think this would be
great" or "No, we think this is an appalling idea."
But in the end, if designers aren't better than the
general public at designing things, what are they
doing as designers?

